18" Newtonian Telescope

A DIY projected inspired by "Aperture Fever"

Keith Venables FRAS www.astrokeith.com

Presentation contents

- The Design Phase
- Photo walk through
- A few early results
- The Observatory Project

Design Goals

- Aperture
 - As big as practical & affordable
 - F number not to be less than 4
- Portability
 - ◆ Occasional visits to UK starparties
- Equatorial & stable mount
 - For astro photography
- Goto
 - Good enough to point a CCD camera automatically
- 80/20 target
 - ◆ 80% performance & functions for 20% cost

The Design

The Process

- design in stages
 - Keep the big picture in mind
 - Work out the detail as the work progresses
- Evolutionary
 - Build on what has been completed
 - Exploit opportunities
- problem solving
 - When things don't work out, take a break and think about it!
- workshop & tools
 - Work within capabilities of tools
 - ◆ Buy tools and blades etc as needed they are as important as the telescope parts themselves
 - Use professionals for special items where necessary.

At last, it looks like a telescope!

Time to check balance, stiffness, & weight

Baltic Birch ply

Weight for weight stronger than Aluminium. Easier to cut & form

Reinforced box gave enormous stiffness.

All cuts made with a router.

Bought as 12mm sheet but layered up where necessary.

Sheet aluminium used extensively, from 1.6 to 25mm thick

RA Axis:

40mm stainless shaft in ball bearings Aluminium "box" carries the shaft into the base of the fork assembly.

Now it <u>really</u> looks like a telescope!

- 18" F4.5 mirror manufactured by Oldham Optics in Suprex© glass,
- 2" crayford type focuser with slow motion feature
- Integral secondary heater & Primary mirror cooling fan
- Equatorially mounted fork
- 14" worm & gear sets supplied by Beacon Hill Telescopes
- AWR Technologies Intelligent Drive System
 - Twin dc stepper motors
 - Intelligent & Simple handsets
 - **▶** PC and autoguider ccd interface connectors
 - Periodic Error Correction
 - 5°/sec slew speed
 - Goto/pointing accuracy 20 arcsec
- 30x70 finder scope
- 120mm guide scope
- Kendrik dew heaters on all optics
- Observatory pc, running
 - **♦ SkyMap Pro9 Planetarium & telescope control**
 - AstroArt 3 CCD control & image processing
 - Sky2000 CCD autotrack
 - On-line email & explorer
 - Remote pc server

next problem!

- The original idea of a roll-off shed seemed inadequate.
 - Requires too much space
 - Insufficient protection when observing
 - Out of character with the telescope
- A domed observatory would be as valuable an investment as the telescope itself.

A 3.2m (11ft) dome would be required, mounted at least 1m above the telescope base.

Raise dome & telescope so as to allow easy entry

Raise floor for convenient observing

Sink concrete pillar into ground to support mount.

Raised telescope & floor will be drier.

Octagonal base looks nice & occupies minimum space

Raised floor does not touch the mount

A fit 18 year old son mixed 1.5 tonnes of concrete for the base.

Designed for disassembly for moving house

1/12 hemisphere made in solid wood & smoothed to shape.

"The Plug"

The "mould" - 4 layers of fibreglass

Phew! A nice fit

Work in progress

A 75x75mm steel angle was rolled into a circle to form the dome base.

This runs on 8 x 8

This runs on 8 x 8 casters

Ready for business

Shutter made of Aluminium.
Top section running in curved Al tracks
Lower section
hinges out.

Telescope installed in Observatory

Single high performance pc controls everything

Costs

Telescope

	N #*		01000
	Mirror	CAT	£1800
·▼ .		SOL	~ 1000

◆ AWR Drive £1300

• Gears £400

Materials <u>£1500</u>
 £5000

valued at £12,000

Observatory

◆ Dome £1000

◆ Base
£500
£1500

valued at £10,000

to do!

- scope
 - ◆ Stronger machined centre box?
 - ◆ Off axis adjustment for guide scope
- observatory
 - ◆ Motorize dome & shutter
 - ◆ Summer cooling extractor fan
 - ◆ Move to a dark site!
- Short term programme
 - Commission
 - Planets, asteroids etc,
 - Explore methods to beat light pollution.